需要予測の8個の手法|メリットや業務を効率化するツール

ECモールやECサイトの運営だけでなく、適切な「需要予測」は企業活動そのものにとっても重要性は高いです。需要予測が正確であれば、ECモールやECサイトにおけるさまざまなリスクの低減やコスト削減の実現につながります。 そこで今回は、需要予測の基礎知識と8つの予測手法について解説します。運営担当者にとっては必須級の情報なので、しっかりと理解したうえで自社のECビジネスに適した需要予測の方法を見つけましょう。

需要予測とは?

需要予測の意味と実施することで得られる代表的な2つのメリットを紹介します。

需要予測の意味

需要予測とは、自社が提供する製品やサービスの需要を予測することです。特に仕入れ販売計画や新製品などの製造計画においては重要であり、ECモールなどの小売業をはじめ、製造業や卸業、飲食業といった幅広い分野で需要予測(仕入れ予測)に基づいた生産・販売・設備投資・資金調達などが行われています。 ECモールやECサイトにおける需要予測の主要な目的は、適正在庫の整備による「在庫切れによる機会損失」や「過剰在庫に売れ残り」の防止です。実現できれば利益の最大化が図れますが、経験や勘ではなくさまざまなデータに基づいた高い予測精度の数値の算出が求められます。

需要予測を行うメリット

需要予測を行うことでどのようなメリットが得られるのでしょうか。代表的な利点である「在庫の最適化」と「従業員の負担軽減」について紹介します。

在庫を最適化できる

前述のとおり、需要予測を行うことで在庫を最適な状態に保ち続けやすくなります。ECモールやECサイトにおいても、商品の種類によっては需要の季節変動があるケースは珍しくありません。さまざまな商品の過去データなどをもとに、適切な発注することで欠品による「在庫切れ」や過剰在庫による「廃棄ロス」の防止につながり、結果的に売上向上を実現できます。

従業員の負担を軽減できる

経験や勘などのアナログで属人的な在庫管理・生産管理は、予測の精度が低いだけでなく、集計作業などが非効率なことも大きなデメリットです。一方、表計算ソフトや機械学習が可能なAI(人工知能)といったITツールを使えば、自動的に需要分析を行えるうえ高精度かつ効率的に需要予測を実施できます。 需要予測が効率的に行える環境を構築できれば、従業員の負担軽減はもちろん、積極的にデータを活用するモチベーションの向上や文化を現場に根付かせやすくなるでしょう。

需要予測の手法一覧

統計的な需要予測の予測方法には、さまざまな種類がありそれぞれ特徴が異なります。8つの手法の概要をまとめたので確認してみましょう。

算術平均法

算術平均法は、過去データの数値をその個数で割る「算術平均」を用いて需要予測を求める方法です。たとえ参照にする数値がバラバラだったしても「今後も不規則な状態が続くもの」として予測することが特徴といえるでしょう。 おおよその値を分かりやすく示せる「最小二乗法の原理」を利用しており、シンプルな計算式である程度の傾向を把握できるのがメリットです。一方、詳細な需要予測は難しいので誤差が生じる可能性は少なくありません。

移動平均法

移動平均法は算術平均と並んでシンプルな方法で需要予測だけでなく、売上予測でも活用されることが多いです。少しずつサンプルとなるデータを取得する時期をずらして計算します。一般的には、前年度の売上実績や販売個数などを数カ月分の平均を算出します。 例えば、2021年の7月の売上を予測する場合は2020年6月、7月、8月のデータを平均することで予測を立てます。平均する月数や期間は分析対象によって異なることも覚えておきましょう。単純な計算方法でありながら、周期が細かいデータの分析に適しているので季節変動の予測などで活用されることが多いです。

指数平滑法

指数平滑法は「時系列データ」から将来の予測値を算出する方法です。前回や過去の実績だけでなく、過去の「予測値」と0以上1未満の「平滑化係数(α)」を用いて平滑化したデータを求めます。
・需要予測値=(平滑化係数)×(前回の実績値)+(1-平滑化係数)×(前回の予測値)
平滑化係数は任意で設定できますが、数値が1に近いほど新しいデータを重視した予測となり、0に近いほど過去の経過に重点を置いた結果となります。

回帰分析法

因果関係のある数値同士の関係性を算出して、その結果をもとに需要を計算する方法です。因果関係の要素(変数)は時間や販売数量などさまざまで、それぞれの平均ではなく数値をそのまま利用して、直線などで表すことが特徴的です。変数が1つの場合は「単回帰分析」、2つ以上になると「重回帰分析」ということも覚えておきましょう。

加重移動平均法

実績データに0以上1以下の「加重平均係数」という「重み」を与えたうえで得られる計算結果を需要予測値とする手法です。 重みを与えることで抽出した実績値の期間などの「重要度」に差が付けられるのが特徴で、参考にしにくい突発的な需要変動の影響の低減や直近のデータをより重視した予測などを得られることができます。 各期間に設定した加重平均係数の合計は必ず1になることも覚えておきましょう。

時系列分析法

過去数年間の販売実績などを分析し、時系列の推移をグラフ化して傾向線によって明らかにすることで需要を予測する手法です。一般的に時系列分析の変動要素には、長期的わたる持続的な変化である「傾向変動」、時間的経過でサイクルを描いて変化する「循環変動」、天候・社会制度などの季節的な原因による「季節変動」、これら3つの要因では説明できない偶発的な「不規則変動」で構成されます。

ホルト・ウィンタース法

「トレンド」や「季節変動」を考慮した需要予測に利用されることが多いのが、ホルト・ウィンタース法です。指数平滑化法の計算式にそれぞれの要素を追加し、指数平均と重ね合わせることで算出します。

多変量解析法

因果関係の結果である「目的変数(従属変数)」と原因である「説明変数(独立変数)」といった複数の変数を用いて、需要を予測する手法です。

需要予測をサポートするツール

需要予測を効果的かつ効率的に行うためには、必要なデータの収集や計算などをサポートするツールの活用が欠かせません。その代表的な4つのツールを紹介します。

Excel(エクセル)

Microsoft Excelには450種類以上の関数が用意されており、それらを駆使すれば比較的効率的に需要予測を行えます。回帰直線による需要予測では「FORECAST関数」、「TREND関数」、「SLOPE関数」を使用するなど、手法によって異なる関数の知識が異なるため使いこなすには一定の勉強量と経験が必要です。 ただ、Excel2016で追加された「予測シート機能」を使えば、ワンクリックで数値をグラフ化できるため、より需要予測を行いやすい機能が充実しつつあります。

在庫管理システム

在庫データのリアルタイムかつ効率的に管理できるシステムです。普段の在庫管理業務の負担軽減だけでなく、過去の販売・仕入れなどのデータも自動的に蓄積されるため、需要予測で必要なデータを収集しやすい環境を構築できます。 また、最近では管理機能だけでなく需要予測システムも搭載している在庫管理システムも提供されています。

市場分析ツール

市場分析ツールは市場のニーズ、競合の情報などをまとめて分析できるマーケティングサポートツールです。さまざまなデータを効率的に収集できるため、担当者の負担を軽減しながら高精度な需要予測を実現できます。 例えば、株式会社Nintが提供する「Nint ECommerce」はECに特化した市場分析ツールで市場トレンド、売れ筋商品の把握、競合ショップの動向調査などが行えます。需要予測分析においても、自社だけでなく競合などのデータを参照することは精度向上にはとても有効です。Nint ECommerceなら過去数年間のデータを調査できるため、自社だけでは取得が難しい客観的で幅広いデータの収集が可能。需要予測だけでなく、タイムリーで効果的な広告戦略や販売戦略も実施しやすくなります。

AI(人工知能)システム

AI(人工知能)システムによる需要予測の支援を行うツールも提供されています。AIが過去のデータや市場を分析し、適正な在庫数まで自動的に予測してくれるため、省力化とヒューマンエラーの防止を図りやすく、人では難しい範囲まで予測分析できるため、より欠品や過剰在庫を防ぎやすい環境を構築できるでしょう。

自社の商品や自身のスキルに適した需要予測の手法を選択しよう

需要予測の概要と手法について解説しました。需要予測にはさまざまな手法があり、目的はもちろん、分析する人のスキルや経験によっても最適な方法は異なります。これから需要予測に挑戦したいECモールやECサイトの担当者の方などは、まずは算術平均法や移動平均法から取り組んでみてはいかがでしょうか。 また、需要予測などのデータ分析は短期的ではなく継続的に取り組むことがとても大切です。ツールなどを導入して、分析に必要な労力をなるべく小さくすることも考慮する必要性が高いでしょう。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です